

Thermal Management within PCB materials for the automotive industry

Table of Content

- Q Insulated Metal Substrate (IMS)
- Q Thermal management
- Q Main properties
- Q Endurance limits
- Q MPCB Constructions
- Q 3D MPCB
- Q Success in automotive

Insulated Metal Substrate (IMS)

IMS

Thick aluminum based substrate, cladded in ED copper foil. Designed for an effective thermal dissipation and high electrical insulation. Our proprietary formulated polymer-ceramic, ensures high thermal conductivity, dielectric strength, and thermal endurance.

Insulated Metal Substrate allows:

- Processing by standard PCB procedures.
- Integrating heat dissipation with no need for extra components.
 - SMD assembly process.

Insulated Metal Substrate (IMS)

Aismalibar

q, A, fixed by design. Ideally: $T_1 \rightarrow T_4$ (environment) So: Small ΔX , Large k desired Limitations for ΔX : dielectric properties, conductivity, mechanical constraints, production limitations, etc. Limitations for k: dielectric properties, material choice limitations.

Insulated Metal Substrate (IMS)

Air gaps = Increased thermal resistance

Thermal resistance and pressure

Aismalibar

FR4 with thermal vias versus COBRITHERM®

Thermal vias ≠ Thermal filled vias

Thermal vias PTH 200µ

Filled thermal vias 150µ

Thermal vias vs IMS

Basic advantages of IMS **COBRITHERM®**

Perfect for cooling surface mount components

Insulating layer: high electrical insulation + thermal dissipation

Ideal for thermal dissipation

Very low thermal resistance

Greater robustness

Good PCB workability

Possibility of larger dimensions than DCBs

How do we make Cobritherm?

With **ALUMINUM**

Aluminium type 5052 or 6061: The most suitable for large series and mechanical processes.

With **COPPER**

Type of copper: Electrodeposited Copper (ED Copper) with special dendritic growth finishing.

METAL	Thermal Cond W/mºK	CTE ppm/⁰C	Density gr/cc
Aluminium	170	25	2.7
Copper	400	17	8.9

How do we make Cobritherm?

Breakdown voltage (Dielectric strength)

Breakdown voltage (Dielectric strength)

Main properties

Breakdown voltage (Dielectric strength)

Breakdown voltage (Dielectric strength) Performed according IPC-TM-650, part 2.5.6.2

 $\frac{9,25Kv + 9,0Kv + 9,5Kv + 9,0Kv + 8,3Kv}{-} = 9,01 \text{ Kv}$

Main properties

The only worldwide IMS supplier that proof-tests 100% of its production

Breakdown voltage

DIELECTRIC BREAKDOWN

Performed according to IPC-TM-650, part 2.5.6.2. Increases AC voltage until dielectric layer fails by electric short. Test is made on a relatively small surface area on the dielectric part using metal electrodes. Values obtained should be treated statistically, and are only a dielectric performance reference, not guaranteed values.

ELECTRICAL PROOF TEST

Production electric control test, performed in 100% of the Cobritherm sheets: Exposes sheets to a DC (1000, 2000, 3000 V) electric field, raising it at 500 V/min. and holds voltage test for five seconds.

Proof-test from 1000 V DC to 3000 V DC: guarantee for the dielectric request.

Proof test / High Pot Test 3.000 V DC

Main properties

Thermal Conductivity

Thermal Conductivity is the property of a material to conduct heat. All materials have a thermal conductivity value.

Aluminum Oxide = 40 W/mK Epoxy resin = 0,2 W/mK Copper = 400 W/mK Aluminum = 170 W/mK

LED industry is focus on thermal conductivity values

Thermal resistance is the correct parameter to check

Thermal Resistance «The thinner the better»

This is the challenge for IMS Suppliers

Thermal resistance or Thermal impedance

			Dielect	ric layer	Global Conductivity W/mK	Global Thermal resistance (Al+dielectric+Cu)	
_	Thickness	Copper	Inickness	W/mK	••//	°C/W	
FR4	1mm	35/00	1mm	0,3	0,3	11,11	
CEM-3	1mm	35/00	1mm	0,6	0,6	5,56	
AICuP	1,5mm	35/00	120	1,8	21,3	0,260 → 97 %Redu	iction
HTC	1,5mm	35/00	130	2,2	23,7	0,234 Fr om FR4	ł
Ultrathin	1,5mm	35/00	35	3,2	70,9	0,074 → 71 %Redu	ction
Flextherm	1,5mm	35/00	25	0,7	33,3	0,156 From AICt	qr
Fastherm	1,5mm(1,4Al+0,1Cu)	35/00	0		141,1	0,035 → 52 %Redu	iction
							athin

99,7% Reduction From FR4 to Fastherm

Endurance limits – MOT values

MOT Maximum Operation Temperature

A dielectric layer is an organic layer

An organic layer gets deteriorated with: **Time**

Constant high temperature will reduce 2 properties in the dielectric layer:

Dielectric strength

Copper adhesion to dielectric layer

T_g ≠ MOT

Glass transition: Is the reversible transition in <u>amorphous</u> materials from a hard and relatively brittle state into a molten or <u>rubber</u>-like state.

MOT:

T_a:

An operating temperature is the <u>temperature at which the PCB operates</u>. The PCB will operate effectively within a specified temperature range. Outside this range, the PCB lifetime is dramatically reduced or may fail.

Endurance limits – MOT values **DULLO** BAismalibar

D5470 is the most suitable method vs E1461 for this kind of materials

Steady state measurements like D5470, usually yield the highest level of accuracy, on the order of +/-5-10%, meanwhile time domain techniques such as E1461, the relative uncertainties are on the order of 15-20%, and at time even larger errors.

E1461		
ain)		
otropic materials		
and density have to be		
y out the test		

SELECTED REASON FOR CHOOSING D5470 AS THE BEST METHOD FOR MEASURING THE THERMAL CONDUCTIVITY IN PCB WITH HIGH THERMAL CONDUCTIVITY								
D5470	E1461							
Specially recommended by ASTM for PC laminates (ASTM D5074 paragraph 5.1)	B No comments or instructions related to PCB samples.							
 ✓ Values of conductivity measured at equal of similar electronics working temperature profile. ✓ Interfacial thermal resistances due to the contact between the sample and the equipment as well as the thermal oil, could be measured and excluded from the global resistance 	 or ∉ Only at high T could be carry out the measure. e ∉ To reduce deviation high T are recommended (600°C) ∉ Laser time pulse must be adjusted based on thickness and nature of the sample. e ∉ Only one standard ceramic thermal diffusivity reference is available with uncertainty 6%. d ∉ Reference specimen and the unknown specimen must be very similar in size, proportions, emissivity and opacity. To assure the correct data, reference and the unknown must be tested very close to each other, both temporally (minutes) and thermally (strictly at the same temperature). ∉ Large number of repeat experiments is needed to reduce random errors 							

	∉	Useful method for ceramics, metals and plastics Useful for heterogeneous materials	∉ ∉	Only for homogenous isotropic and solid materials. Heterogeneous and anisotropic materials frequently produce erroneous data.
SAMPLE	∉ ∉ ∉	No sample preparation is needed Built up metal base laminate is measured (metal base + dielectric + copper ED) Samples with reduced thickness or really too thin could be measured	∉ ∉ ∉	Coating of the specimen with very thin uniform graphite or other high emissivity coating on both faces is required previous to measuring. Metal base laminate by itself is not possible to be measured Thickness of the sample must be 1-6mm (only dielectric). Really big difference thickness between the sample measured and the real built up PCB laminate Only dielectric layer alone can be measured

RESULTS	 ✓ Thermal resistance due to international interfaces are considered (internal built us of the metal base laminate, such at interface between dielectric layer and metal base and copper ED) ✓ Only the thickness of the sample as a external parameter is needed to carry our the calculation of thermal conductivity. 	 Porosity of the material produce mistakes in the lecture Heat capacity and density of the specimen it is necessary to measure previously to obtain thermal conductivity. a) This method tends to give erroneous results for specific heat capacity for materials with large anisotropy (typically composites with directional structures). b) Density may be calculated. Error is included due to density is a thermal dependent parameter, and normally is measured at room temperature, and not at 400-600°C (T used for calculation) c) Increasing of uncertainty due to accumulative measure errors
---------	---	---

METHOD DESCRIPTION

D5470

This state technique is based on heat conduction between two parallel, isothermal surfaces separated by a test specimen of uniform thickness. The thermal gradient imposed on the specimen causes the heat flow. Apparent thermal conductivity is directly obtained from this data and the thickness of the specimen. **Fig 1**

E1461

A small, disc specimen is subjected to a high intensity duration radiant energy. The energy of the pulse is absorbed on the front surface of the specimen and the resulting rear face temperature rise (thermal curve) is recorded. The thermal diffusivity value is calculated from the specimen thickness and the time required for the rear face temperature rise to reach a percentage of its maximum value. **Fig 2**

HTC ULTRATHIN COMPOSITION

RANGE

HTC ULTRA-THIN

- Provides higher thermal performance
- Excellent working temperature.
- Dielectric thickness of 35,50 and 75 µm.
- Thermal resistance Ultrathin $35\mu m$ down to 0,11 Kcm²/W (0,017 Kinch²/W).
- Thermal resistance Ultrathin 50 μ m down to 0,15 Kcm²/W (0,024 Kinch²/W).
- Thermal resistance Ultrathin 75 μ m down to 0,23 Kcm²/W (0,036 Kinch²/W).
- Offers excellent thermal dissipation conditions for high power LED applications.

		Comp	osition		Dielectric layer						
	Aluminium		Copper		Thickness		Conductivity		Thermal impedance		
							1	2	3	4	
	mm	inch	mic	Onz	mic	(mil)	W/mK	W/inchK	Kcm ² /W	Kin ² /W	
Ultrathin 35µm	1,5	0,059	35	1	35	1,4	3,2	0,081	0,109	0,017	
Ultrathin 50µm	1,5	0,059	35	1	50	2,0	3,2	0,081	0,156	0,024	
Ultrathin 75µm	1,5	0,059	35	1	75	3,0	3,2	0,081	0,234	0,036	

COBRITHERM® HTC ULTRA-THIN

- Provides higher thermal performance.
- Excellent working temperature.
- Dielectric thickness of only 35 microns.
- Thermal resistance down to 0,11 Kcm²/W (0,017 Kinch/W) which offers excellent thermal dissipation conditions for high power LED applications.

	Composition				Dielectric layer						
	Alum	ninium	Сор	per	Thick	ness	Cond	uctivity	Thern	nal impec	lance
							1	2	3	4	5
	mm	inch	mic	Onz	mic	(mil)	W/mK	W/inchK	Kcm ² /W	Kin ² /W	°C/W
Ultrathin 35µm	1,5	0,059	35	1	35	1,4	3,2	0,081	0,109	0,017	0,036
Ultrathin 50µm	1,5	0,059	35	1	50	2,0	3,2	0,081	0,156	0,024	0,052
Ultrathin 75µm	1,5	0,059	35	1	75	3,0	3,2	0,081	0,234	0,036	0,078

Aging cycles

Aging cycles

ULTRATHIN	DATA SHEET COBRITHERM HTC	3,2W 35 ULTRA THIN	I LAYER (PROOF	DS_160208 • TEST 1000V)						
35µm	DESCRIPTION Insulated Metal Substrate (IMS), based aluminum clad with ED copper foil on the opposite side. It is designed for the reliable thermal dissipation of circuitry. A proprietarily formulated polymer-ceramic ultra thin bonding layer with high thermal conductivity and dielectric strength allows us to guarantee thermal endurance. The material is supplied with a film on the aluminum side to protect it against wet PCB processes. ROHS compliance directive 2002/95/EC and REACH Nº 1907/2006									
	Aluminum thickness, m (in)	1000 (0.039) - 1500 (0.059) - 2000 (0.078) - 3000 (0.12)	Aluminium Alloy / Treat	5052						
	Insulation thickness, m	35 micron (1,37 mils)	Dielectric thickness tolerance	+ 10 m (0,4mils)						
	ED copper thickness, m	35 (1oz) - 70 (2oz) - 105 (3oz) - 210 (6oz)								
	Other constructions available up	on request		÷						
	UL Approved, QMTS2, QMTS8 File: E47820 IPC 4101									

(1) Electrical proof test. 100% of our laminate production delivered, has been "on line" verified at 1000v V_{dc}: 500 V/sec. ramp // 5sec.

PROPERTIES 1500 m Al / 35 m dielectric /70 m Cu	TEST METHOD	UNITS	TYPICAL VALUES	Guaranteed values
Time to blister at 288°C, floating on solder (50 x 50 mm)	IEC-61189	Sec	>120	>60
Copper Peel strength, after heat shock 20 sec/288°C (Cu 70mic)	IPC-TM 650-2.4.8	N/mm (Lb/in)	2,0 (16,0)	>1,5 (>10,3)
Dielectric breakdown voltage, AC (2)	IPC-TM 650-2.5.6.3	kV	3	2.5
Proof Test, DC (1)		V	1000	1000
Thermal conductivity (dielectric layer)	ASTM-D 5470	W/mK (W/inK)	3,20 (0,081)	3,00 (0,076)
Thermal impedance (dielectric layer) HTC 35	ASTM-D 5470	Kcm ² /W (Kin ² /W)	0,11 (0,017)	0,12 (0,018)
Surface resistance after damp heat and recovery	IEC-61189	MΩ	10 ⁵	10 ⁵
Volume resistivity after damp heat and recovery	IEC-61189	MΩm	10 ⁴	10 ⁴
Relative permittivity after damp heat and recovery, 10 kHz	IEC-61189	-	4,5	4,5
Dissipation factor after damp heat and recovery 10 kHz	IEC-61189	5	0,02	0,02
Comparative tracking index (CTI)	IEC-61112	V	600	>550
Permittivity	1000	pF/m (pF/in)	6,7 (39,4)	6,7 (39,4)
Flammability, according UL-94, class	UL-94	class	V-0	V-0
Glass transition temperature of dielectric layer (by TMA)	IPC-TM 650-2.4.24	°C	120	120
Maximum operating temperature		C	150	150

DATA SHEET DS 160307 **ULTRATHIN ULTRA THIN LAYER** COBRITHERM HTC 3,2W 50 mic (PROOF TEST 750V) 50 µm DESCRIPTION Insulated Metal Substrate (IMS), based aluminum clad with ED copper foil on the opposite side. It is designed for the reliable thermal dissipation of circuitry. A proprietarily formulated polymer-ceramic ultra thin bonding layer with high thermal conductivity and dielectric strength allows us to guarantee thermal endurance. The material is supplied with a film on the aluminum side to protect it against wet PCB processes. ROHS compliance directive 2002/95/EC and REACH Nº 1907/2006 STANDARD CONSTRUCTIONS Aluminum Alloy / Treat 1000 (0.039) - 1500 (0.059) - 2000 5052 Aluminum thickness, m (in) (0.078) - 3000(0.12)Dielectric thickness tolerance Insulation thickness, m 50 micron (2 mils) + 20 m (0,8mils) 35 (1oz) - 70 (2oz) - 105 (3oz) -ED copper thickness, m 210 (6oz) Other constructions available upon request UL Approved , QMTS2, QMTS8 File: E47820 **IPC 4101**

(1) Electrical proof test. 100% of our laminate production delivered, has been "on line" verified at 750V

PROPERTIES 1500 m Al / 50 mic dielectric /70 mic Cu	TEST METHOD	UNITS	TYPICAL VALUES	Values
Time to blister at 288°C, floating on solder (50 x 50 mm)	IEC-61189	Sec	>120	>60
Copper Peel strength, after heat shock 20 sec/288°C (Cu 35mic)	IPC-TM 650-2.4.8	N/mm (Lb/in)	1,5 (8,5)	>1,0 (>5,7)
Dielectric breakdown voltage, AC (2)	IPC-TM 650-2.5.6.3	kV	2,5	2,0
Proof Test, DC (1)	18177	V	750	750
Thermal conductivity (dielectric layer)	ASTM-D 5470	W/mK (W/inK)	3,20 (0,081)	3,00 (0,076)
Thermal impedance (dielectric layer)	ASTM-D 5470	Kcm ² /W (Kin ² /W)	0,16 (0,024)	0,17 (0,026)
Comparative tracking index (CTI)	IEC-61112	V	600	>550
Flammability, according UL-94, class	UL-94	class	V-0	V-0
Glass transition temperature of dielectric layer (by TMA)	IPC-TM 650-2.4.24	°C	120	120
Maximum operating temperature	<u></u>	C	150	150

DATA SHEET DS 160307 **ULTRATHIN** COBRITHERM HTC 3,2W 75mic **ULTRA THIN LAYER** (PROOF TEST 750V) 75 µm DESCRIPTION Insulated Metal Substrate (IMS), based aluminum clad with ED copper foil on the opposite side. It is designed for the reliable thermal dissipation of circuitry. A proprietarily formulated polymer-ceramic ultra thin bonding layer with high thermal conductivity and dielectric strength allows us to guarantee thermal endurance. The material is supplied with a film on the aluminum side to protect it against wet PCB processes. ROHS compliance directive 2002/95/EC and REACH Nº 1907/2006 STANDARD CONSTRUCTIONS Aluminum Alloy / Treat 1000 (0.039) - 1500 (0.059) - 2000 5052 Aluminum thickness, m (in) (0.078) - 3000(0.12)75 micron (2 mils) Insulation thickness, m + 20 m (0,8mils) Dielectric thickness tolerance 35 (1oz) - 70 (2oz) - 105 (3oz) -ED copper thickness, m 210 (6oz) Other constructions available upon request UL Approved, QMTS2, QMTS8 File: E47820 **IPC 4101**

1) Electrical proof test. 100% of our laminate production delivered, has been "on line" verified at 750V							
PROPERTIES 1500 m Al / 50 mic dielectric /70 mic Cu	TEST METHOD	UNITS	TYPICAL VALUES	Values			
Time to blister at 288°C, floating on solder (50 x 50 mm)	IEC-61189	Sec	>120	>60			
Copper Peel strength, after heat shock 20 sec/288°C (Cu 35mic)	IPC-TM 650-2.4.8	N/mm (Lb/in)	1,5 (8,5)	>1,0 (>5,7)			
Dielectric breakdown voltage, AC (2)	IPC-TM 650-2.5.6.3	kV	3,5	3,0			
Proof Test, DC (1)		V	750	750			
Thermal conductivity (dielectric layer)	ASTM-D 5470	W/mK (W/inK)	3,20 (0,081)	3,00 (0,076)			
Thermal impedance (dielectric layer)	ASTM-D 5470	Kcm ² /W (Kin ² /W)	0,23 (0,016)	0,25 (0,039)			
Comparative tracking index (CTI)	IEC-61112	V	600	>550			
Flammability, according UL-94, class	UL-94	class	V-0	V-0			
Glass transition temperature of dielectric layer (by TMA)	IPC-TM 650-2.4.24	°C	120	120			
Maximum operating temperature		Э С	150	150			

Recognised OEM Customers

FASTHERM®

New technology developed **by AISMALIBAR** to achieve a faster thermal transition from the LED thermal pad into the heat sink.

This superior thermal transition can be achieved by using the entire **COBRITHERM** HTC product range with either a Copper or Copper / Aluminium base.

By using AISMALIBAR COBRITHERM HTC range together with FASTHERM technology LED's operate at 30°C to 50°C lower in temperature due to the direct thermal transition from the thermal pad to the heatsink

FASTHERM ® COMPOSITIONS

Aluminium / Copper heat sink

Copper / Copper heat sink

FASTHERM ® COMPOSITIONS

Aluminium / Copper heat sink

FASTHERM® versus COBRITHERM®

			Compos	ition		Dielecti	ric Layer	IMS	(Aluminu	m + dielee	ctric + co	pper)
	Alur	ninum	Coppe funct	er (non ional)	Copper	Cond	uctivity		Conducti	vity ºC/W	The Impe	rmal dance
	mm.	inch	mic	onz	mic	W/mK	W/inchK	W/mK	W/inchK	Kcm2/W	Kin2/W	°C/W
FASTHERM	1,43	0,056	100	2	70			132,8	3,374	0,118	0,018	0,039
ULTRATHIN	1,59	0,059	0	0	70	3,2	0,081	72,2	1,834	0,222	0,034	0,074
HTC 3,2w 90u	1,5	0,059	0	0	70	3,2	0,081	43,1	1,095	0,394	0,061	0,131
AlCuP	1,5	0,059	0	0	70	1,8	0,046	21,7	0,551	0,78	0,104	0,26
AlCuP-G	1,5	0,059	0	0	70	1,3	0,033	16,3	0,414	1,036	0,161	0,345

90% Thermal resistance reduction

Bendable and conformable FLEXTHERM®

FLEXTHERM is ideal to produce conformable MPCB's which can be bent without compromising the initial dielectric strength between conductive layers. (Al and Cu).

The flexible properties of this material enable it to conform to both the negative and positive radius allowing the product to adapt to the ever changing demands of the industry.

Typical applications for FLEXTHERM are high power LED, power supply modules and the automotive industry.

Bendable and conformable FLEXTHERM®

DATA SHEET

D5_160727

DESCRIPTION			
Insulated Metal Substrate (IN	(IS), based aluminum clad with F	RA copper foil on one or both	sides. It is designed for
the reliable thermal dissipation	ion of circuitry.		
FLEXTHERM is ideal for con maintaining the initial dielec	formable MPCB manufacturing. tric strength in between conduc	It can be bent afte <mark>r MPCB</mark> pro tive layers (Al and Cu).	duction while
SPECIFICATIONS			
Withstands Lead Fre	e Soldering process		
Excellent for high ter	mnerature components applicati	one	
Extremely low therm	al impedance	0113	
Excentery low therm	aimpedance		
• V-0 Granted			
 Halogen Free 			
 High MOT values 			
 Produced with RA co 	opper to grant conformable prop	erties	
The material is supplied with	n a film on the aluminium side to	protect it against wet PCB protect it against we	ocesses.
ROHS compliance directive	2002/95/EC and REACH Nº 190	7/2006 IPC-4101	
STANDARD CONSTRUCTIONS		-	12
Aluminium thickness, µm (inch)	800 (0,032) - 1000 (0,039)- 1500 (0,059)	Aluminium Alloy / Treat	1050-3003 -5052-5754
	05 (0.00 mile) 05 (4.00 mile)	Dielectric thickness tolerance	+ 8 um (0 1 mils)
Insulation thickness, µm	20 (0,98 mils) -30 (1.38 mils)	Lieleculo ullokiless tolerance	· • • µm (0.1 mms)
Insulation thickness, µm RA copper thickness, µm	25 (0,98 mils) -35 (1.38 mils) 35 (1oz) – 70 (2oz)	Dielectric trickness tolerance	<u>· o µm (o. r mis)</u>

PROPERTIES 1500 μm Al / 25 μm dielectric / 35 μm Cu	TEST METHOD	UNITS	TYPICAL VALUES	Guaranteed values
Time to blister at 288°C, floating on solder (50 x 50 mm)	IEC-61189	sec	>60	>30
Copper Peel strength, after heat shock 20 sec/288°C	IPC-TM 650-2.4.8	N/mm (Lb/inch)	1,5 (16,0)	>1,0 (>10,3)
Dielectric breakdown voltage, AC (1) Flextherm 25µm		154	2	2
Dielectric breakdown voltage, AC (1) Flextherm 35µm		ĸv	4	4
Thermal conductivity (dielectric layer)	ASTM-D 5470	W/mK (W/in-K)	0,7 (0,018)	0,6 (0,015)
Flammability, according UL-94, class	UL-94	Class	V-0	V-0
Thermal Impedance °C-m ² /watt Flextherm 25 µm		14 200 ac - 2000	0,36 (0,055)	0,42 (0,065)
Thermal Impedance °C-m ² /watt Flextherm 35 µm	Calculated	Kom"/W (K in"/W)	0,50 (0,078)	0,58 (0,090)
Maximum Operational Temperature	6	°C	140	130
Aluminium Thermal Conductivity	ASTM-D 5470	W/mK	135	130
Copper Thermal Conductivity	ASTM-D 5470	W/mK	375	380

(*) Values or parameters measured with a destructive method or limited size for the test sample must be considered as a representative values, and not as guaranteed values. They are not guaranteed over 100% of the material.

Thermal impedance profile

			THE	RMAL	COND	UCTIVIT	Y AND TH	ERMAL	IMPEDANCE		
	Co	ompositio	n			Dieleo	tric layer		(Aluminiur	IMS m+dielectric+	-copper)
	Alum	inium	Сор	per	Thic	kness	Cond.	Rth	Cond.	Rth	1
	mm	inch	mic	Onz	mic	(mil)	W/mK	ºC/W	W/mK	Kinch2/W	≌C/W
Flextherm	0,8	0,031	35	1					20,6	0,065	0,139
25mic	0,8	0,031	70	2					21,4	0,065	0,139
	1	0,039	35	2	25	1,0	0,7	0,119	24,5	0,067	0,144
	1	0,039	70	2					25,3	0,067	0,144
	1,5	0,059	35	1					33,3	0,073	0,156
	1,5	0,059	70	2					33,9	0,073	0,157
Flextherm	0,8	0,031	35	1					15,5	0,087	0,187
35mic	0,8	0,031	70	2					16,1	0,087	0,187
	1	0,039	70	2	35	1,4	0,7	0,167	19,2	0,089	0,192
	1	0,039	70	2					19,2	0,089	0,192
	1,5	0,059	35	1					25,7	0,095	0,204
	1,5	0,059	70	2					26,2	0,095	0,204

Thermal impedance profile

Sample construction:

- Special design of the copper tracks has been carried out to evaluate the electrical isolation after several radios and bending angles.
- 35 and 70mic copper thickness were etched at 0,1mm to 1mm line width to study their fragility under positive and negative bending, as well as the tension produced over the dielectric layer at closed angles. Thinner the tracks, higher tension and more possibility for breaking the dielectric.
- Both dielectric thickness 25mic and 35mic, were tested.
- Full copper also was tested

B Aismalibar

Bending test

Test:

- Samples have been bended with positive and negative direction (copper inside and outside respectively).
- 1KV DC current is applied before and after bending (1KV maintenance 3sec).

POSITIVE BENDING

NEGATIVE BENDING

Bending test

1KV DC 3sec € 0.0mA Perfect electrical isolation
 Mechanical stress € NO defect under visual inspection over Al, dielectric layer and Cu
 Only Positive bending at radius <1mm and >/=60^o breaks mechanically

		Wi	dth Cop	oper tra	acks (m	im)
Angle	Radius (mm)	0,2	0,3	0,4	0,5	1,0
45º	4,9	OK	OK	ОК	ОК	ОК
	2,9	OK	OK	OK	OK	ОК
	1,8	ОК	ОК	ОК	ОК	ОК
60º	<1	OK	OK	OK	OK	OK

FLEXTHERM 0,8/35 - NEGATIVE BENDING

FLEXTHERM 0,8/35 - POSITIVE BENDING

		Width Copper tracks (mm)						
Angle	Radius (mm)	0,2	0,3	0,4	0,5	1,0		
45º	4,9	ОК	ОК	ОК	ОК	ОК		
	2,9	ОК	ОК	ОК	ОК	ОК		
	1,8	ОК	ОК	ОК	ОК	ОК		
60º	<1	NOK	NOK	NOK	NOK	NOK		
	(1) Copper trac	ks as we	ll as diele	ectric lay	er breaks			

Note: Standard solder mask can have cracking problems.

Solder mask manufacturers can supply special solder mask for bendable porpoise.

Recommendation: PI cover layer is an ideal solution

Bending test

1KV DC 3sec € 0.0mA Perfect electrical isolation Mechanical stress € NO defect under visual inspection over Al, dielectric

FL	EXTHERM 1,	5/70 -	FLEXTHERM 1,5/70 - POSITIVE BENDING					FLI	EXTHERM 1,5	5/70 - I	NEGATI	VE BEN	IDING	
Width Copper tracks (mm)						Wi	dth Cop	oper tra	acks (m	ım)				
Angle	Radius (mm)	0,2	0,3	0,4	0,5	1,0		Angle	Radius (mm)	0,2	0,3	0,4	0,5	1,0
45º	4,9	ОК	ОК	OK	ОК	ОК		45 ⁰	4,9	OK	ОК	ОК	ОК	ОК
	2,9	ОК	ОК	OK	_ ОК	_ ОК			2,9	OK	OK	OK	OK	ОК

To achieve smaller radius and reduced angles on FLEXTHERM AL 1,5mm and over it's recommended to reduce Al thickness with scoring or depth control on Aluminium side.

FLEXTHERM[®] Orientative product applications

FLEXTHERM	Standard Construction (µ) Al / Dielectric / Cu	Dielectrical breakdown voltage AC	Orientative Applications
FLEXTHERM - 25	1.500 / 25 / 35 or 70	2.000 V	HiPo LEDs > 4 W. Medium Power applications, LEDs. Max. cost-effectiveness
FLEXTHERM - 35	1.500 / 35 / 35 or 70	4.000 V	High Power applications, DC Power converters

NEW HTC 4,0W

DATA SHEET

ULTRA THIN LAY

PROOF TEST 750V)

DESCRIPTION

Insulated Metal Substrate (IMS), based aluminum clad with ED copper foil on the opposite side. It is designed for the reliable thermal dissipation of circuitry. A proprietarily formulated polymer-ceramic ultra thin bonding layer with high thermal conductivity and dielectric strength allows us to guarantee thermal endurance.

The material is supplied with a film on the aluminum side to protect it against wet PCB processes. ROHS compliance directive 2002/95/EC and REACH Nº 1907/2006

STANDARD CONSTRUCTIONS	5		
Aluminum thickness, m (in)	1000 (0.039) – 1500 (0.059)	Aluminum Alloy / Treat	5052
Insulation thickness, m	50 micron (2 mils)	Dielectric thickness tolerance	<u>+ 15 micron (0,6 mils)</u>
ED copper thickness, m	35 (1oz) – 70 (2oz) – 105 (3oz) - 210 (6oz)		
Other constructions available upo	on request		
UL Approved , QMTS2, QM	TS8 File: E47820	IPC 4101	

 Electrical proof test. 100% of our laminate production delivered, has been "on line" verified at 750v V_{dc}: 500 V/sec. ramp // 5sec.

PROPERTIES 1500 m Al / 35 m dielectric /70 m Cu	TEST METHOD	UNITS	TYPICAL VALUES	Values
Time to blister at 288°C, floating on solder (50 x 50 mm)	IEC-61189	Sec	>120	>60
Copper Peel strength, after heat shock 20 sec/288°C	IPC-TM 650-2.4.8	N/mm (Lb/in)	1,2 (16,0)	>1,0 (>10,3)
Dielectric breakdown voltage, AC (2)	IPC-TM 650-2.5.6.3	kV	2,5	>2,0
Proof Test, DC (1)		V	750	750
Thermal conductivity (dielectric layer)	ASTM-D 5470	W/mK (W/inK)	4,1 (0,104)	4,00 (0,102)
Thermal impedance (dielectric layer)	ASTM-D 5470	Kcm ² /W (Kin ² /W)	0,08 (0,013)	0,09 (0,014)
Flammability, according UL-94, class	UL-94	class	V-0	V-0
Glass transition temperature of dielectric layer (by TMA)	IPC-TM 650-2.4.24	°C	120	120
Maximum operating temperature		C	150	150

(*) Values or parameters measured with a destructive method or limited size for the test sample must be considered as a representative values, and not as guaranteed values. They are not guarented over 100% of the material.

(2) Dielectric Breakdown test is a material destructive laboratory test. It is performed according the IPC-TM-650 part 2.5.6.3., by using AC voltage until electric failure on a relatively small surface area of the dielectric layer using metal electrodes. Values should be taken as a material reference and not as guaranteed values.

Success in automotive

COBRITHERM ®ULTRATHIN 35µ

COBRITHERM®

Mercedes-Benz

Many Top manufacturers trust in our products C- Class

Many Top manufacturers trust in our products VW – Touran

Success in automotive

COBRITHERM®

Many Top manufacturers trust in our products BMW 7 Series & 6 Series

New car models in 2016 New Clio 2016

New car models in 2016 Audi- Q-3 Audi- Q-5

DULLO INTERNATIONAL CO., LTD

4F, No. 542, Sec.1 Ming-Sen N. Rd., Kueishan,

Taoyuan, Taiwan, R.O.C

E-mail: dullo888@ms26.hinet.net

Assistant : dullo168@ms53.hinet.net

TEL:886-3-2123118 FAX:886-3-2121368